Article 16315

Title of the article

ULTRA-DISPERSED CARBIDES AS A TOOL MATERIAL FOR MILLING OF HARD-TO-MACHINE MATERIALS

Authors

Anikeev Aleksandr Ivanovich, Candidate of engineering sciences, associate professor, head of hard alloy sector, All-Russian Research and Development Institute of Refractory Metals and Hard Alloys (56 Varshavskoe highway, Moscow, Russia), vniits@rambler.ru
Vereshchaka Aleksey Anatol'evich, Candidate of engineering sciences, associate professor, Institute of Engineering and Design Informatics of the Russian Academy of Sciences (building 1a, 18 Vadkovsky lane, Moscow, Russia ), ecotech@rambler.ru
Vereshchaka Anatoliy Stepanovich, Doctor of engineering sciences, professor, Moscow State Technological University “STANKIN” (1 Vadkovsky lane, Moscow, Russia), dr_averes@rambler.ru
Bublikov Yuriy Ivanovich, Candidate of physical and mathematical sciences, Institute of Engineering and Design Informatics of the Russian Academy of Sciences (building 1a, 18 Vadkovsky lane, Moscow, Russia ), yubu@rambler.ru

Index UDK

67.05

Abstract

Background. The object of the study is ultra-disperse carbides with wearresistant coating (tool material for milling of hard-to-machine materials). The subject of the research is the process of symmetrical milling of heat resistant alloys machinability of hard-to-machine nickel-based alloys used in aircraft engine production industry.
Materials and methods. Investigation of cutting inserts’ properties made of ultradisperse tungsten carbide UD-10 with different coatings was performed on a vertical milling machine 6T12 model at symmetrical milling of alloys HN77TYUR and HN73MBTYU-VD.
Results. In symmetrical milling of heat resistant alloys HN73MBTYU-VD and HN77TYUR tool life of face mills, equipped with inserts UD-10 – Ti-(Ti,Al)N-TiN, was 2.5–3.4 times higher than tool life of both uncoated control inserts VK10HOM and inserts VK10HOM – Ti-(Ti,Al)N-TiN. The authors noted almost a complete lack of micro pitting and chipping of inserts UD-10 – Ti-(Ti,Al)N-TiN at milling of the hard-machined alloy HN73MBTYU-VD with a fairly large cross sections cut (SZ = 0,125 mm/tooth and t = 1, 0 mm). The latter indicates a fairly low brittle strength of face mills, equipped with inserts UD-10 and UD-10 – Ti-(Ti,Al)N-TiN. Reduction of cutting speed effect on tool life when increasing it from 20 to 50 m/min for the hard-machined heat resistant alloy HN77TYUR allows to predict a possibility of significant increase in processing capacity by increasing cutting speed 1.5–2.0 times.
Conclusions. It is shown that the balance of viscosity and hardness of superdispersed carbides, a significant increase of structural homogeneity and properties of inserts made of superdispersed carbides can significantly increase firmness and stability properties of the cutting tool during interrupted cutting in comparison with conventional carbides used for similar purposes.

Key words

hard-to-machine materials, ultra-disperse carbides, interrupted cutting.

Download PDF
References

1. Vereshchaka A. S. STIN. 2005, no. 8–9.
2. Vereshchaka A. A., Vereshchaka A. S., Mgaloblishvili O., Morgan M. N., Batako A. D. International Journal of Advanced Manufacturing Technology. 2014, vol. 72, iss. 1, pp. 303–317.
3. Surf. Coat. Technol. 1992, vol. 52, p. 123.
4. Vetter J., Burgmer W., Dederichs H., Perry A. Material Science Forum. 1994, vol. 163–165, pp. 527–532.
5. Vereshchaka A. A. Vestnik Bryanskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of Bryansk State Technical University]. 2014, no. 3 (43), pp. 10–13
6. Scherbarth S. Moderne Schneidstoffe und Werkzeunge-Wege zur gesteigerten Produktivität [Modern cutting materials and instruments – ways to improve labor productivity]. Werkzeugtagungung, 2002.
7. Vereshchaka A. A. Izvestiya Kabardino-Balkarskogo gosudarstvennogo universiteta [Proceedings of Kabardino-Balkaria State University]. 2013, vol. III, no. 6, pp. 57–60.
8. Vereschaka A. A., Vereschaka A. S., Grigoriev S. N., Sladkov D. V. Applied Mechanics and Materials. 2013, vol. 325–326, pp. 1454–1459.
9. Tai C. N. et al. Surface and Coatings Technology. 1990, vol. 43–44, pp. 324–335.
10. Akari K., Tamagaki H., Kumakiri T., Tsuji K., Koh E. S., Tai C. N. Surface and Coatings Technology. 1990, vol. 43–44, pp. 312–323.
11. Sarthrum P., Coll B. F. Surface and Coatings Technology. 1992, vol. 50, pp. 103–109.
12. Boxman R. L., Zhitomirsky V., Alterkop B., Gidalevich E., Beilis I., Keidar M., Goldsmith S. Surface and Coatings Technology. 1996, vol. 87–88,pp.243–253.
13. Martin P. J., Bendavid A. Thin Solid Film. 2001, vol.394,pp.1–15.
14. Vereshchaka A. S., Vereshchaka A. A., Savushkin G. Yu., Sivenkov A. S. Perspektivnye materialy [Prospective materials]. 2014, no. 5, pp. 39–48.
15. Vereshchaka A. A., Vereshchaka A. S., Popov A. Yu. Uprochnyayushchie tekhnologii i pokrytiya [Reinforcing technologies and coatings]. 2014, no. 5, pp. 28–32.
16. Vereshchaka A. S., Vereshchaka A. A. Uprochnyayushchie tekhnologii i pokrytiya [Reinforcing technologies and coatings]. 2010, no. 6, pp. 28–43.
17. Vereshchaka A. S., Vereshchaka A. A., Bulycheva A. I. Uprochnyayushchie tekhnologii i pokrytiya [Reinforcing technologies and coatings]. 2014, no. 5, pp. 33–39.
18. Vereshchaka A. A., Vereshchaka A. S., Sedykh M. I. Rezhushchie instrumenty s modifitsiruyushchimi iznosostoykimi kompleksami [Cutting instruments with modifying wear-resistant complexes]. Moscow: MGTU «STANKIN», 2014, 196 p.
19. Vereshchaka A. A., Vereshchaka A. S., Grigor'ev S. N. Uprochnyayushchie tekhnologii i pokrytiya [Reinforcing technologies and coatings]. 2012, no. 12, pp. 3–11.

 

Дата создания: 28.12.2015 13:47
Дата обновления: 28.12.2015 15:56